Defense Committee: Michael Zyda Jernej Barbic Andrew Nealen Heather Culbertson

1

Design Lenses for 3D User Interface in Extended Reality

Powen Yao GamePipe Lab Thomas Lord Department of Computer Science University of Southern California

"Any sufficiently advanced technology is indistinguishable from magic."

- Arthur C. Clarke

My work presents a systematic and practical approach to the design and development of user interfaces and user interactions in XR that feel like Clarke's magic.

Table of Contents

- Introduction
- Theoretical
 - Spatial Interaction Model
 - Design Lenses
 - Gesture Taxonomy
- Practical
 - School of Spatial Sorcery SSS
 - Virtual Equipment System VES
 - Extradimensional Storage EDS
- Evaluation of VES
- Summary & Conclusion
- Future Work

Introduction

- Extended Reality (XR)
- XR Qualities
- State of XR
- Existing Approach
- Problems
- Approach

Reality-Virtuality Continuum

Figure: Reality-Virtuality (RV) Continuum diagram P. Milgram, H. Takemura, A. Utsumi, and F. Kishino, "Augmented reality: A class of displays on the reality-virtuality continuum," 1995, vol. 2351, pp. 282–292.

Extended Reality (XR)

AR

VR

MR

XR

Extended Reality (XR)

Umbrella term that encompasses any sort of technology that alters reality by addding digital elements to the physical or real-world environment by any extent.

XR Qualities

• 3D Spatial Interaction

• Objects are part of the interaction environment (as interactors or interactables)

• Users are part of the interaction environment

Many Contexts

3D Spatial Interaction

With Motion Controllers or technology to track the user's body, 3D spatial interaction is a staple in XR

Objects are part of interaction environment (as Interactors or Interactables)

An object, whether physical or virtual, can be tracked in XR.

The apple can be an interactor.

User as part of the environment: Physical Space & Postures

Mobile Augmented Reality: Walking, Riding Vehicles, Driving Vehicles

12 m - Nokiantie

() () (15) ____ ECO D

XR's Many Contexts

Different Contents: Work, Sports, Training, Medical, Entertainment, Health, Social

13

BRARE!

Existing Approach

3D User Interface

A user interface that involves 3D interaction.

THEORY AND PRACTICE

SECOND EDITION

"An essential guide for anyone developing interfaces for Virtual and Augmented Reality gaming experiences." JOSEPH J. LaVIOLA, JR. ERNST KRUIJFF RYAN P. MCMAHAN DOUG A. BOWMAN IVAN POUPYF15

-Richard Marks, Director of Magic Lab, Sony PlayStation

Natural User Interface

A natural user interface or natural interface is a user interface that is effectively invisible, and remains invisible as the user continuously learns increasingly complex interactions.

BRAVE NUI WORLD

DESIGNING NATURAL USER INTERFACES FOR TOUCH AND GESTURE

DANIEL WIGDOR DENNIS WIXON

Hyperphysical User Interface

Hyperphysical User Interfaces do not follow the rules of real-world physics.

Many Interaction Techniques

Lots of interaction techniques were developed to address the many different needs.

Many Interaction Techniques

In the 3D User Interfaces textbook, techniques are classified based on the type of user task

Let's look at one of the **most** common tasks

- 1) Selection and Manipulation
- 2) Travel
- 3) System Control

THEORY AND PRACTICE

SECOND EDITION

"An essential guide for anyone developing interfaces for Virtual and Augmented Reality gaming experiences." JOSEPH J. LaVIOLA, JR. ERNST KRUIJFF RYAN P. MCMAHAN DOUG A. BOWMAN IVAN POUPYF19

-Richard Marks, Director of Magic Lab, Sony PlayStation

Locomotion Vault

https://locomotionvault.github.io/

Challenges

Many different considerations such as contexts, scenarios, situations with the user as a part of the interaction environment

Many techniques to address the different contexts and scenarios, each with different strengths and weaknesses

Lack of a unified system control interface to allow the user to utilize the best technique for the situation at hand

Need for ways to evaluate techniques for different contexts

This Thesis's Approach

Assumptions

This thesis work applies primarily to 6 Degree of Freedom XR

The design presented also makes the following assumptions:

The user's body can eventually be fully tracked

Physical objects, environment can be fully tracked and its context known

XR simulated in VR

Proof of concepts are built and tested in Virtual Reality to simulate Extended

Problem	Solution	Result
Many qualities and contexts to design for in XR	Help design and create better interaction techniques	Implemented many interaction techniques in SSS, VES, and EDS
Have many interaction techniques but unable to determine the best interaction for the job	Help discover and determine the best interaction technique for the job	Created Spatial Interaction Model and the Design Lenses to use on the model. Expanded and adapted Gesture Taxonomy for XR
Have many interaction techniques but unable to access the best interaction for the job	Help manage and access the best interaction technique for the job	Interaction techniques that help manage repository of interactions, such as VES and EDS
		25

Approach

- Identify and utilize Design Lenses for XR Interaction on the Spatial Interaction Model
- 2. Develop a Multi-Dimensional
- **Taxonomy** of Gesture as a design guide
- 3. Explore and Prototype different

Interaction Techniques and Interaction Technique Management

Solutions

Theoretical Components

Body of Work

Spatial Interaction Model

What is Interaction?

"The term interaction is field-defining, yet surprisingly confused." Hornbæk, Kasper, and Antti Oulasvirta. "What is interaction?." CHI 2017

Concept	View of interaction	Key phenomena and con- structs	Good interaction	Example support for evaluation and design
Dialogue	a cyclic process of commu- nication acts and their inter- pretations	mappings between UI and in- tentions; feedback from the UI; turn taking	understandable; simple, natural; direct	methods/concepts for guessability, feedback, mapping; walkthroughs
Transmis- sion	a sender sending a message over a noisy channel	messages (bits); sender and receiver; noisy channels	maximum throughput of in- formation	metrics and models of user performance
Tool use	a human that uses tools to manipulate and act in the world	mediation by tools; directness of acting in the world; activity as a unit of analysis	useful and transparent tools; amplification of hu- man capabilities	compatibility in instrumental interaction; break down analysis
Optimal behavior	adapting behavior to goals, task, UI, and capabilities	rationality; constraints; prefer- ences; utility; strategies	improves or reaches max- imum or satisfactory utility	models of choice, foraging, and adaptation
Embodi- ment	acting and being in situations of a material and social world	intentionality; context; coupling	provides resources for and supports fluent participa- tion in the world	studies in the wild; thick description
Experience	an ongoing stream of expec-	non-utilitarian quality; expecta-	satisfies psychological	metrics of user experience;
	tations, feelings, memories	tions; emotion	needs; motivating	experience design methods
Control	interactive minimization of	feedforward; feedback; refer-	rapid and stable conver-	executable simulations of
	error against some reference	ence; system; dynamics	gence to target state	interactive control tasks

Table 1. Overview of some key concepts of interaction in HCI literature. The columns sum up the core view of what interaction is, the key phenomena that the view has helped see and their associated constructs, the notion of good interaction that follows from the view, and the key techniques and methods to help evaluating and designing user interfaces.

A model based on XR qualities

A model based on XR qualities

A model based on XR qualities

A model based on XR qualities

A model to apply design lenses

Spatial Interaction Model

A model based on XR qualities

A model based on XR qualities

A model to apply design lenses

Spatial Interaction Model

A model based on XR qualities

Spatial Interaction Model

A model based on XR qualities

A model to apply design lenses

Body of Work

Design Lenses

Design Lenses

- Hyperphysical User Interface
- Whole-Body Interaction
- **Extradimensional Space**

Book Lenses

Design Lens Hyperphysical User Interface

"The Ultimate Display"

In Ivan Sutherland's classic article from 1965 "The Ultimate Display", he stated "There is no reason why the objects displayed by a computer have to follow the ordinary rules of physical reality with which we are familiar."

The Sword of Damocles by Ivan Sutherland

Aspects of Hyperphysicality

Manifestation -> Action -> Effect

Surrogate Object

hand blade -> blade

Surrogate Action

chop -> disconnecting wave

Surrogate Effect

Chopped air-> disconnect)

Aspects of Hyperphysicality

Manifestation -> Action -> Effect

Manifestation

Interactor(s) Interactable(s) Environment

Action

Effect

43

Hyperphysicality in Manifestation

Manifestation -> Action -> Effect

47

Hyperphysicality in Action

Hyperphysicality in Action

1111

-

Hyperphysicality in Action

Other Examples in Hyperphysicality in Action

- Various Hand Gestures
 - Finger Gun
 - Stop (Block) Gesture
- Disembodied hand being controlled remotely
- Various Locomotion Techniques
 - Pull to Walk
 - Swing to Walk
 - Finger Walking

Manifestation -> Action -> Effect

PLAY

ONLINE

Manifestation -> Action -> Effect

54

Insert Slide Reel to Continue

COUS EXTRA

OPERATIVES

Manifestation -> Action -> Effect

Operation: Deep Dive

Operation: riendly Skie THE R

Hyperphysical Lenses

- Lens of Surrogate Manifestation
- Lens of Surrogate Action
- Lens of Surrogate Effect
- Lens of Hyperphysical References

The Lens of Hyperphysical Reference

Consider common sources of seemingly impossible and fantastical phenomena with which the user may be familiar. Draw inspiration and establish cmmon grounds using cartoon physics, the principles of stage magic, magic systems from real-life rituals or fantasy novels, technologies in science fiction, etc.

- What source of hyperphysicality can be referenced to aid user understanding?
- How easily can this concept of hyperphysicality be taught to the user?

Design Lens Whole-Body Interaction

Head as an Interactor or Interactable

The Lab - Metaphor for Entering another World

Fantastic Contraption - Storage Space

Various VR Games - putting food next to the mouth to eat

Hand as an Interactor or interactable

https://twitter.com/pushmatrix/status/122978123 9445389315

By Daniel Beauchamp @pushmatrix

Other Body Parts Enabled by Advancing Technology

Personal, Peripersonal, and Extrapersonal Space

Personal space: the area immediately bordering the body

Peripersonal space: the area that is within the distance of the user's reach

Extrapersonal space: the area beyond the user's hand reach without help of tools

Whole-Body Interaction Lenses

Lens of Interaction Roles

Lens of Soma-Semantic

Lens of Body Capability

The Lens of Body Capability

Consider the strengths and weaknesses of this body part. Ask yourself these questions

Is this body part a good fit for the technique and task?
Can this interaction technique be performed using a different body part?

• Can Hyperphysicality be used to provide accessibility for those with restricted body movement?

Design Lens Extradimensional Space

Definition of Dimension

In Astrophysics, the term "universe" describes the **sum of all space and time that we live in.**

Universe, dimension, plane, world, space, or reality are often used in worksof fiction interchangeably without a clear distinction or definition for each.

A dimension is the sum of all space and time that are connected physically.

Definition of Extradimensional Space

Fiction work posits that there are other distinct and separate sums of space and time that are not connected physically with our own. This may be described using terms such as alternate, another, extradimensional, or parallel to refer to a dimension other than our own.

Hammerspace in Pop Culture

Extradimensional Space Lenses

Lens of Permission

Lens of Relevancy

Lens of Dimension Shift

Lens of Dimensional Sight

The Lens of Permission

Consider what are the restrictions when performaing an interaction. Ask yourself these questions

• Can this interaction technique access entities in extradimensional space?

- If not, should this interaction technique be an extradimensional interaction technique?
- What are the criteria to access entities in this

extradimensional space?

Extradimensional Space Lenses

Lens of Permission

Lens of Relevancy

Lens of Dimension Shift

Lens of Dimensional Sight

The Lens of Relevancy

Consider what matters the most during an interaction Ask yourself these questions

• Is this entity relevant to the current interaction?

• Should it be stored in another dimension for later use?

Body of Work

Multi-Dimensional Taxonomy of Gesture

Powen Yao, Tian Yang, and Michael Zyda "Toward a Gesture System Architecture in Extended Reality Based on a Multi-dimensional Taxonomy of Gestures" HCII 2023

Introduction

Multi-Dimensional Taxonomy of Gesture for Extended Reality

Based on Spatial Interaction Model and the Design Lenses

Two classes of dimensions. Gesture Mapping and Physical Characteristics.

Prior Works in Taxonomy

Linguistics

Efron 1941, Kendon 1988, McNeill 1992

Human-Computer Interaction

Quek et al. 1994, Pavlovic 1997, Cassell 1998

Multi-Dimensional Gesture Taxonomy

Poggi 2001, Karam 2005, Wobbrock 2009 (Surface Gestures), Ruiz 2011 (Motion Gestures), Vafaei 2013 (VR and mid-air hand gestures)
Key Points

• Inclusion of emergent qualities in XR

• Break down of the "Nature" Dimension

• System Architecture based on the Taxonomy

Physical Characteristics

Physical Characteristics

Physical Characteristics can be viewed as properties of the interactor and the action performed by the interactor.

Put simply, Physical Characteristics are about the properties of the interactor and its actions.

Dimensions	Sub-unitensions	Categories	Sub-categories	Description
	-	Relevant		Gesture involves the x-axis of position
Danitian	x	Irrelevant		Gesture ignores the x-axis of position
		Relevant		Gesture involves the y-axis of position
rosmon	y	Irrelevant		Gesture ignores the y-axis of position
	-	Relevant		Gesture involves the z-axis of position
	2	Irrelevant		Gesture ignores the z-axis of position
		Relevant		Gesture involves the roll-axis of rotation
	x	Irrelevant		Gesture ignores the roll-axis of rotation
Dec		Relevant		Gesture involves the pitch-axis of rotation
Kotation	У	Irrelevant		Gesture ignores the pitch-axis of rotation
	-	Relevant		Gesture involves the yaw-axis of rotation
	z	Irrelevant		Gesture ignores the yaw-axis of rotation
		Static		No motion/change is in gesture
	Form	Dynamic		Motion/change occurs in gesture
			Hand	Arm is fixed, but palm or fingers move
		User Body	Arm	Arm moves (hand moves as well)
			Head	Gesture is performed by head movement
			Shoulder	Gesture is performed by shoulder movement
_			Foot	Gesture is performed by foot movement
In	teractor		Eyes	Gesture is performed by pupil movement
			Mouth	Gesture is performed by lip movement
			Other body parts	Gesture is performed by other body part
		Input Device		Gesture utilizes Input Device as an interactor
		In-Environment Object		Gesture utilizes In-Environment Object as an interactor
14	1. P. V.	Simple		Gesture utilizes only one interactor
Mi	ultiplicity	Multiple		Gesture utilizes multiple interactors
71.57		Symmetric		Gesture utilizes multiple interactors performing similar motion
Action	n Symmetry	Asymmetric		Gesture utilizes multiple interactors doing performing different motior
		High		Interactors are very similar in its form and function
Interacto	r Homogeniety	Medium		Interactors are only somewhat similar in its form and function
0		Low		Interactors are not similar in its form and function
Complexity		Simple		Gesture involves an atomic gesture
		Compound		Gesture involves multiple atomic gestures
		None		Gesture does not involve changes in position or rotation
		Position / An	gle	Gesture involves changes in position/angle
Motio	n Threshold	Velocity		Gesture involves changes in velocity/angular velocity
		Acceleration		Gesture involves changes in acceleration/angular acceleration
		Jerk		Gesture involves changes in jerk/angular jerk
		JEIK		

Decemintion

Dimensional Cub dimensional Catagonias Cub actogonias

Physical Characteristics - Interactor

F	Form Static			No motion/change is in gesture	
				Motion/change occurs in gesture	
			Hand	Arm is fixed, but palm or fingers move	
			Arm	Arm moves (hand moves as well)	
			Head	Gesture is performed by head movement	I
		User Body Input Device	Shoulder	Gesture is performed by shoulder movement	
Late			Foot	Gesture is performed by foot movement	
Inte	ractor		Eyes	Gesture is performed by pupil movement	I
			Mouth	Gesture is performed by lip movement	I
			Other body parts	Gesture is performed by other body part	
				Gesture utilizes Input Device as an interactor	
		In-Environment Object		Gesture utilizes In-Environment Object as an interactor	ſ
	Simple			Gesture utilizes only one interactor	_
Mult	iplicity	Multiple		Gesture utilizes multiple interactors	
Action	Symmetry	Symmetric		Gesture utilizes multiple interactors performing similar motion 76	
Action Symmetry	<i>Symmetry</i>				

Physical Characteristics - Additional Emergent Quality

		1000 (101) (the second se	
		Input Device	Gesture utilizes Input Device as an interactor	
		In-Environment Object	Gesture utilizes In-Environment Object as an interactor	
	Multiplicity	Simple	Gesture utilizes only one interactor	
	Multiplicity	Multiple	Gesture utilizes multiple interactors	
	Action Symmetry	Symmetric	Gesture utilizes multiple interactors performing similar motion	
Action Symmetry		Asymmetric	Gesture utilizes multiple interactors doing performing different motion	n
		High	Interactors are very similar in its form and function	
	Interactor Homogeniety	Medium	Interactors are only somewhat similar in its form and function	
		Low	Interactors are not similar in its form and function	
	Complexity	Simple	Gesture involves an atomic gesture	
Complexity	Complexity	Compound	Gesture involves multiple atomic gestures	
		Compound	Gesture involves multiple atomic gestures	
		None	Gesture does not involve changes in position or rotation 77	

Physical Characteristics - Additional Emergent Quality

			2
		Input Device	Gesture utilizes Input Device as an interactor
		In-Environment Object	Gesture utilizes In-Environment Object as an interactor
	Multiplicity	Simple	Gesture utilizes only one interactor
	мишрисиу	Multiple	Gesture utilizes multiple interactors
	Action Summatry	Symmetric	Gesture utilizes multiple interactors performing similar motion
	Action Symmetry	Asymmetric	Gesture utilizes multiple interactors doing performing different motion
		High	Interactors are very similar in its form and function
	Interactor Homogeniety	Medium	Interactors are only somewhat similar in its form and function
		Low	Interactors are not similar in its form and function
		Simple	Gesture involves an atomic gesture
	Complexity	Compound	Gesture involves multiple atomic gestures
		None	Gesture does not involve changes in position or rotation 78
		Position / Angle	Gesture involves changes in position/angle

Gesture Mapping

Gesture Mapping

Gesture Mapping can be viewed as **any quality that can be used as context to map an action to a different effect**

Put simply, Gesture Mapping is the context to decipher the physical characteristics within a gesture to determine the effect.

it's the **'how'** and **'what else'** to consider.

		0	•
Source of Meaning		Physical	Gesture derives its meaning from laws of physics
		Hyperphysical	Gesture derives its meaning from an alternate laws of physics
		Universal	Gesture derives its meaning from a generally universal set of values
		Cultural	Gesture derives its meaning from shared cultural values
		None	Gesture does not derives its meaning from any particular source; its arbitrary
		Has Target	Gesture has at least a target to interact with
T	arget	No Target	Gesture has no target to interact with
		Direct	Direct Relationship between Intent and Action
Action	Mapping	Indirect	Indirect Relationship to Gesture between Intent and Action
		Direct	Direct Relationship between Intent and Effect
Effect	Mapping	Indirect	Indirect Relationship to Gesture between Intent and Effect
		Object / International	Coordinate matern to account the matern is based on an abient
		Diject/Interactable	Coordinate system to process the gesture is based on an object
		Region	Coordinate system to process the gesture is based on a region
<i>c r</i>		World	Coordinate system to process the gesture is based on the world
Coordu	iale System	User	Coordinate system to process the gesture is based on the user
		Interactor	Coordinate system to process the gesture is based on the interactors
		Independent	No particular coordinate system is needed to process the gesture
		Mixed Dependencies	Use combination of coordinate system
		Object	Gestures require interaction with specific objects
		Region	Gestures require interaction with region-specific context
Interact	ion Context	World	Gesture require interaction with the world
1		User	Gestures require interaction with the user
Temporal		Mixed Interaction Context	Gestures require interaction with multiple kinds of above components
		No Context	Gestures do not require interaction within any context
		Continuous	Action/task is performed during gesture
		Discrete	Action/task is performed after completion of gesture
n i n i	Region-Associated	Effect of gesture is relevant to which region it is performed in	
Environmeni	Kegion	Region-Independent	Effect of gesture is independent from region
		Private	Only me
		Personal	My friends
Socia	l Context	Social Groups	My teammates
		Public	Anyone else
		Personal Space	Gesture is performed in user's Personal Space
		Peripersonal Space	Gesture is performed in user's Peripersonal Space
	Proximity	Extrapersonal Space	Gesture is performed in user's Extrapersonal Space
		Not Relevant	Gesture is performed in any space
		Standing	Gesture is based on User in the standing posture
User		Sitting	Gesture is based on User in the sitting posture
	Posture	Lving Down	Gesture is based on User in the lying posture
		Other postures	Gesture is based on User in other postures not listed above
		Stationary	Gesture is based on if the User is stationary
	Mobility	Mohile	Gesture is based on if the User is travelling
	moonny	Mobile/Transportation Method	Gesture is based on the User's transportation method, e.g. bievela, bus, car-
		Houses	Centure is based on the evel s transportation method, e.g. Dicycle, bus, cal
	r	Human Di il C	Gesture has numan as the audience
Au	alence	Kigid System	Gesture has a rule-based program as the audience
		Intelligent Agent	Gesture has an intelligent agent similar to human

Description

Dimensions Sub-dimensions

Categories

80

Gesture Taxonomy Breaking down the "Nature Dimension"

"Nature" Dimension in Previous Taxonomies

The definition of Nature is **"the mapping from gestures to their meaning"**

Nature

- Physical: Gesture acts physically on objects.
- Metaphorical: Gesture indicates a metaphor.
- Symbolic: Gesture visually depicts a symbol.
- Abstract: Gesture-referent mapping is arbitrary.

Additional Dimensions

We propose the addition of these dimensions to replace Nature:

- Source of Meaning
- Target
- Action Mapping
- Effect Mapping

These are included in the Spatial Interaction Model.

Gesture Mapping

<i>d</i> imensions	Sub-dimensions	Categories	Description
		Physical	Gesture derives its meaning from laws of physics
		Hyperphysical	Gesture derives its meaning from an alternate laws of physics
Source	of Meaning	Universal	Gesture derives its meaning from a generally universal set of values
		Cultural	Gesture derives its meaning from shared cultural values
		None	Gesture does not derives its meaning from any particular source; its arbitrar
p.	T	Has Target	Gesture has at least a target to interact with
	largel	No Target	Gesture has no target to interact with
Action Mapping		Direct	Direct Relationship between Intent and Action
		Indirect	Indirect Relationship to Gesture between Intent and Action
		Direct	Direct Relationship between Intent and Effect
Effec	t Mapping	Indirect	Indirect Relationship to Gesture between Intent and Effect
			Constitution and a second s
		Region	Coordinate system to process the gesture is based on a region
		World	Coordinate system to process the gesture is based on the world
Coordi	nate System	User	Coordinate system to process the gesture is based on the user 84
		7	

Source of Meaning Dimension

Nature is transformed to Source of Meaning dimension

Oimensions	Sub-dimensions	Categories	Description
		Physical	Gesture derives its meaning from laws of physics
		Hyperphysical	Gesture derives its meaning from an alternate laws of physics
Source	of Meaning	Universal	Gesture derives its meaning from a generally universal set of values
		Cultural	Gesture derives its meaning from shared cultural values
		None	Gesture does not derives its meaning from any particular source; its arbitrar
Target		Has larget	Gesture has at least a target to interact with
		No Target	Gesture has no target to interact with
Action Mapping		Direct	Direct Relationship between Intent and Action
		Indirect	Indirect Relationship to Gesture between Intent and Action
	Direct	Direct Relationship between Intent and Effect	
Effect Mapping		Indirect	Indirect Relationship to Gesture between Intent and Effect
		Object / Interactable	Coordinate system to process the gesture is based on an object 85
+			

Target Dimension

In the previous taxonomies' Nature dimension, physical is the only category with a target.

However, consider a thumbs up at a User Interface to show approval.

Action Mapping and Effect Mapping Dimension

	Dimensions Sub-dimension	s Categories	Description
		Physical	Gesture derives its meaning from laws of physics
		Hyperphysical	Gesture derives its meaning from an alternate laws of physics
	Source of Meaning	Universal	Gesture derives its meaning from a generally universal set of values
		Cultural	Gesture derives its meaning from shared cultural values
		None	Gesture does not derives its meaning from any particular source; its arbitrary
	T	Has Target	Gesture has at least a target to interact with
Target		No Target	Gesture has no target to interact with
		Direct	Direct Relationship between Intent and Action
Action Mapping	Indirect	Indirect Relationship to Gesture between Intent and Action	
		Direct	Direct Relationship between Intent and Effect
	Effect Mapping	Indirect	Indirect Relationship to Gesture between Intent and Effect
		Object (Internet Alle	
		Region	Coordinate system to process the gesture is based on a region
		World	Coordinate system to process the gesture is based on the world
Coordinate System		User	Coordinate system to process the gesture is based on the user 87
		I	

User avatar moves when the user's legs move.

Nature: Physical

VS.

Source of Meaning: Physical

Action Mapping: Direct

Effect Mapping: Direct

Target:

None (self)

User avatar moves when the user's fingers mimic legs and move.

Nature: Metaphor

VS.

Source of Meaning:	Physical
Action Mapping:	Indirect
Effect Mapping:	Direct

Target:

None (self)

A car moves when the user's legs move

Nature: Arbitrary

VS.

Source of Meaning:PhysicalAction Mapping:DirectEffect Mapping:Indirect

Target:

Car

A car moves when the user's fingers mimic legs and move

Nature: Arbitrary

VS.

Source of Meaning:PhysicalAction Mapping:IndirectEffect Mapping:Indirect

Target:

User avatar moves when the user draws a symbol (wheel) to represent run

Nature: Metaphor

VS.

Source	of Meaning:	Cultural

Action Mapping: Indirect

Effect Mapping: Direct

Target:

None (Self)

A car moves when the user draws a symbol (wheel) to represent run.

Nature: Arbitrary.

VS.

Source of Meaning:	Cultural
Action Mapping:	Indirect
Effect Mapping:	Indirect
Target:	Car

Gesture Mapping Continued

Gesture Mapping

Effect Manning	Direct	Direct Relationship between Intent and Effect
Ejject Mapping	Indirect	Indirect Relationship to Gesture between Intent and Effect
	Object / Interactable	Coordinate system to process the gesture is based on an object
	Region	Coordinate system to process the gesture is based on a region
	World	Coordinate system to process the gesture is based on the world
Coordinate System	User	Coordinate system to process the gesture is based on the user
	Interactor	Coordinate system to process the gesture is based on the interactors
	Independent	No particular coordinate system is needed to process the gesture
	Mixed Dependencies	Use combination of coordinate system
	Object	Costuras require interaction with specific objects
	Region	Gestures require interaction with region-specific context
Internation Context	World	Gesture require interaction with the world
Interaction Context	User	Gestures require interaction with the user
	Mixed Interaction Context	Gestures require interaction with multiple kinds of above components

Gesture Mapping - Interaction Context

		Independent	No particular coordinate system is needed to process the gesture	
		Mixed Dependencies	Use combination of coordinate system	
		Object	Gestures require interaction with specific objects	
Interaction Context		Region	Gestures require interaction with region-specific context	
		World	Gesture require interaction with the world	
		User	Gestures require interaction with the user	
	Mixed Interaction Context	Gestures require interaction with multiple kinds of above component	ts	
		No Context	Gestures do not require interaction within any context	
Temporal		Continuous	Action/task is performed during gesture	
		Discrete	Action/task is performed after completion of gesture	
Environment	Region	Region-Associated	Effect of gesture is relevant to which region it is performed in	
		Region-Independent	Effect of gesture is independent from region	
Social Context		Private	Only me	
		Personal	My friends	
		Social Groups	My teammates	99

Gesture Mapping - Environmental, Social Contexts

Interaction Context		Object	Gestures require interaction with specific objects	
		Region	Gestures require interaction with region-specific context	
		World	Gesture require interaction with the world	
		User	Gestures require interaction with the user	
		Mixed Interaction Context	Gestures require interaction with multiple kinds of above compone	ents
		No Context	Gestures do not require interaction within any context	
Temporal		Continuous	Action/task is performed during gesture	
		Discrete	Action/task is performed after completion of gesture	
Environment	Region	Region-Associated	Effect of gesture is relevant to which region it is performed in	
		Region-Independent	Effect of gesture is independent from region	
Social Context		Private	Only me	
		Personal	My friends	
		Social Groups	My teammates	
		Public	Anyone else	100_

OK (America)

Money (Japan)

Mudra (seal of consciousness in yoga)

Sun (North American Plains Indian Sign Language)

And many more..

Gesture Mapping - User Contexts

7

Social Context		Personal	My friends
		Social Groups	My teammates
		Public	Anvone else
User	Proximity	Personal Space	Gesture is performed in user's Personal Space
		Peripersonal Space	Gesture is performed in user's Peripersonal Space
		Extrapersonal Space	Gesture is performed in user's Extrapersonal Space
		Not Relevant	Gesture is performed in any space
	Posture	Standing	Gesture is based on User in the standing posture
		Sitting	Gesture is based on User in the sitting posture
		Lying Down	Gesture is based on User in the lying posture
		Other postures	Gesture is based on User in other postures not listed above
	Mobility	Stationary	Gesture is based on if the User is stationary
		Mobile	Gesture is based on if the User is travelling
		Mobile/Transportation Method	Gesture is based on the User's transportation method, e.g. bicycle, bus, car
Audience		110000	Sesture has human as the authence
		Rigid System	Gesture has a rule-based program as the audience
		Intelligent Agent	Gesture has an intelligent agent similar to human

Gesture System Architecture

Spatial Interaction Model

Putting It All Together

• Spatial Interaction Model

Design Lenses

Gesture Taxonomy

Body of Work

Body of Work

Smart Home / Simulated Environment (Precursor to School of Spatial Sorcery) Zezhen Xu, Powen Yao, and Vangelis Lympouridis. "Virtual Control Interface: A System for Exploring AR and IoT Multimodal Interactions Within a Simulated Virtual Environment". HCII 2021

Powen Yao et al. "Toward Using Multi-Modal Machine Learning for User Behavior Prediction in Simulated Smart Home for Extended Reality". IEEE VR 2022

Powen Yao et al. "Using Multi-modal Machine Learning for User Behavior Prediction in Simulated Smart Home for Extended Reality". VAMR 2022 / HCII 2022

Introduction

The School of Spatial Sorcery is an exploration of spatial interactions using the creation of spells as a **substitute** for day-to-day interaction tasks.

Arcane Symbols of Elements and of Shapes

Equipment as Metaphor for Having Abilities

Handheld Equipment

Wearable Equipment

Handheld Equipment

Audio:

Level: -74.8 dB (MUTED) DSP load: 0.2% Stream load: 0.09

Graphics: CPU: main 14.5ms render thread 3.2ms Batches: 141 Saved by batching: 0 Tris: 32.9k Verts: 43.2k Screen: 1657x1480 - 28.1 MB SetPass calls: 64 Shadow casters: 25 Visible skinned meshes: 0 Animations: 0

Locomotion

Wand of Rotational Casting

Show/Hide Debug Code 3

G : StartW

Cast different elemental spells as you change the rotation of the Roll Axis.

Comes in Positional variety and the Angular Jerk variety.

Spellbooks

Spellbooks are storage for arcane symbols.

Spellbooks can also be stored in storages.

Spellbook (Simple)

Upon picking up the spellbook with the Grip Button, you will see a collection of spell symbols floating on top of the spellbook.

Simply grab one of the spell symbols with the other controller using the grip button, then release the grip button to cast the spell.

Spellbook (Combination)

Upon picking up the spellbook, you will see a collection of element symbols as well as a collection of type symbols floating on top of the spellbook.

To cast a spell, you must select an element and a shape before a spell will be created.

Wearable Equipment

Extradimensional Sight

Extradimensional Sight allows the user to see information hidden away in another dimension.

This prevents the user from being overwhelmed by information.

User can access information based on their needs.

Managed through Monocles

Monocle of Extradimensional Sight

Mage Sight: See ghosts, secret doors, or enemy elemental weaknesses.

Developer Sight: See and interact with user interfaces for debugging, such as a command console or level reset button.

Scholar Sight: See info about an item or a technique, such as relevant works, citations, or a summary of significance to academia.

Simple Extradimensional Storage

Туре	Implementation	Description
Flipspace	Flipspace	Access by flipping an interactable upside-down
Reachspace	Sleevespace, Cloakspace	Access by passing the interactor through an Entry
Slidedoorspace	Lapel Space, Trunk Space	Access by first grabbing a handle to open the space, then by reaching in
Drawerspace	Chest Space	Access by first grabbing a handle to pull out the space, the spatial location of the content changes as the handle position changes

Flipspace

Access arcane symbols by flipping the controller upside down.

Sleevespace

Reachspace at user's wrist

Access by simply **reaching** past the entry

Cloakspace

- Reachspace at below user's forearm
- Access by simply **reaching** past the entry

Simple Extradimensional Storage

Туре	Implementation	Description
Flipspace	Flipspace	Access by flipping an interactable upside-down
Reachspace	Sieevespace, Cloakspace	Access by passing the interactor through an Entry
Slidedoorspace	Lapel Space, Trunk Space	Access by first grabbing a handle to open the space, then by reaching in
Drawerspace	Chest Space	Access by first grabbing a handle to pull out the space, the spatial location of the content changes as the handle position changes

Simple Extradimensional Storage

Туре	Implementation	Description
Flipspace	Flipspace	Access by flipping an interactable upside-down
Reachspace	Sleevespace, Cloakspace	Access by passing the interactor through an Entry
Slidedoorspace	Lanel Space Trunk Space	Access by first grabbing a handle to open the space,
	Lapershate	then by reaching in
Drawerspace	Chest Space	Access by first grabbing a handle to pull out the space, the spatial location of the content changes as the handle position changes

Body of Work

Virtual Equipment System

(Work listed on next slide)

VES Contribution

Powen Yao, Tian Zhu, and Michael Zyda. "Adjustable Pointer in Virtual Reality for Ergonomic Interaction". IEEE VR 2020

Powen Yao, Tian Zhu, and Michael Zyda. "Designing Virtual Equipment Systems for VR". HCII 2020

Powen Yao et al. "Interfacing with Sensory Options Using a Virtual Equipment System". SUI 2020

Powen Yao, Vangelis Lympouridis, and Michael Zyda. "Virtual Equipment System: Expansion to Address Alternate Contexts". HCII 2021

Powen Yao, Vangelis Lympouridis, and Michael Zyda. "Virtual Equipment System: Face Mask and Voodoo Doll for User Privacy and Self-Expression Options in Virtual Reality". IEEE VR 2021

Powen Yao, Shitong Shen, and Michael Zyda. "Virtual Equipment System: First Evaluation of Egocentric Virtual Equipment for Sensory Settings". VAMR 2022/HCII 2022

Introduction

Virtual Equipment System makes use of visual **metaphors** to guide users on how to interact with their equipment and the associated functionalities based on the look and feel of the equipment.

Virtual Equipment System can be integrated and implemented across different devices and systems to be part of a **universal user interface** for different extended realities.

Summary of VES

- 1. Manifestation
 - a. Egocentric Equipment can exist in peripersonal and extrapersonal space
 - b. Egocentric Equipment can include traditional Exocentric Equipment and Workspace
 - c. Equipment in alternate space (list-space, tab-space, etc)
- 2. Action
 - a. Multiple Egocentric Equipment can be stored in the same Equipment Slot
 - b. Egocentric Equipment in the same physical space, but in a different dimension
 - c. Accessing equipment not stored in physical space via multi-modal interaction
 - d. Hybrid Interaction with other techniques
- 3. Effect
 - a. Alt Node Interaction
 - b. Equipment Gestures (Motion, Surface, Tap, etc)
 - c. Examples of different contexts
 - i. Sensory Set Sensory Setting, Privacy Set Privacy Options, Avatar Set Avatar Presence

Manifestation: Equipment in Personal, Peripersonal, and Extrapersonal Space

Effect: Applying VES to Different Contexts

With the hyperphysical effects, we can apply VES to different contexts with different sets of Equipment.

Multiple Equipment Sets can be worn at a time.

Equipment Sets

- Sensory Set for Incoming Sensory
 Data
- Privacy Set for Outgoing User Data (Privacy)
- Management Set for VES Management
- Cosmetic Set for Outgoing User Data (Cosmetic)
- Avatar Set for Using Alternate Avatars
- Dev Set for Development or Debug
- App/Game-Specific Set

- In red are body parts with tracking disabled.
- In gray are body parts that
 are not tracked.
- The green camera represents the perspective in which we are seeing the user's privacy data status.

User placing an Alternate Avatar in the virtual environment by interacting with the Avatar Doll at the back of the user's head

Action: Multiple Equipment Sets

Equipment Set

- Sensory Set
- Privacy Set
- Avatar Set

Eye Location

- Sensory Set Adjust Brightness
- Privacy Set Turn on/off eye tracking
- Avatar Set Create Eye Avatars

They utilize many of the same locations! Need for **extradimensional space**!

Body of Work

Powen Yao, Zhankai Ye, and Michael Zyda. "Virtual Equipment System: Toward Bag of Holding and Other Extradimensional Storage in Extended Reality". VAMR 2022 / HCII 2022

EDS Storage in Pop Culture

5 Components of a Storage System

Extradimensional Space Storage

EDS Storage

Taxonomy of Inventory Systems

Cmentowski et al. performed Game Analysis using Grounded Theory Analysis

> Cmentowski, Sebastian, Andrey Krekhov, and Jens Krüger. "" I Packed My Bag and in It I Put...": A Taxonomy of Inventory Systems for Virtual Reality Games." 2021 IEEE COG

Open Codes Concepts Building Blocks

Modified Taxonomy

Based on our independent work of Extradimensional Space Storage, we introduce the components of interactor, interactable (access, container, stored Item), and storage space.

Body of Work

Introduction

We conducted a **within-subjects user study** followed by a questionnaire based on modified **NASA-TLX**.

In it, we compared **different interaction techniques** for adjusting audio volume. We also examined the effect of having Virtual Equipment in **different locations** within personal and peripersonal space. We performed statistical analyses on the collected data, such as the Kruskal-Wallis H Test. Results suggests that there are definitive differences among the different classes of techniques.

Overall, some class of techniques are better in one aspect (duration required), while worse in another (motion required).

Research Questions

RQ1: How do the techniques compare in terms of efficiency?

RQ2: How do the techniques compare in the effort required for each interaction technique?

RQ3: What makes users prefer one technique over another?

VES User Study Interaction Techniques

Use of Virtual Equipment in Different Spaces

Virtual Headphones by the **user's ear** in Personal Space

Virtual Headphones by the **user's waist** in Personal Space

Virtual Headphones in 1 o'clock direction in Peripersonal Space

Interaction Techniques

- Motion Gesture (as applied to 3 locations)
- Surface Gesture (as applied to 3 locations)
- Alt Node
- Menu

Task Type	Shorthand	Description	
1	Headphones + Motion	Personal Equipment (Ear)	
		Motion Gesture	
2	Headphones + Surface	Personal Equipment (Ear)	
		Surface Gesture	
3	Waist + Motion	Personal Equipment (Waist)	
		Motion Gesture	
4	Waist + Surface	Personal Equipment (Waist)	
		Surface Gesture	
5	Peri + Motion	Peripersonal Equipment	
		Motion Gesture	
6	Peri + Surface	Peripersonal Equipment	
		Surface Gesture	
7	Alt Node + Slider	Moving a slider on a 2D Menu	
		for Audio, through the use of Alt Node	
8	Menu Button + Sliders	Moving a slider on a 2D Menu	
		for Audio, through a menu button on	
		the VR Controller	

Motion Gesture

When the user grabs any of the Virtual Headphones and moves it up and down, this would trigger its Equipment Motion Gesture.

The up and down gestures correspond to the increase or decrease of the system's audio volume, respectively.

Surface Gesture

When the user pushes the trigger button and moves the controller, this draws a white line where the motion controller's tip is. As the user lets go, the white line is interpreted to determine which Equipment Surface Gesture it was.

The up and down gestures correspond to the increase or decrease of the system's audio volume.

2D Menu (Traditional)

2D Menu is the most common way to adjust audio settings other than having physical buttons on the VR headset.

The user would push the menu button on the controller. Then use the ray interactor to navigate through the General Menu, Settings Menu, then Audio Settings Menu to adjust the Master volume.

Alt Node

User can grab the Virtual Headphones and dropping it in the Alt Node (think Alt Key). This summons the detailed setting menu associated with that Virtual

In the case of a Virtual Headphone, it is an detailed Audio Settings Menu. The user can then adjust the master volume

VES User Study Methods

Pink Cube

The user needs to place both controllers inside the pink cube to initiate a task.

Start Experimen ave Experimen et Mt Node

Put both hands inside the cube to get the next task 1 seconds

Pink Cube

To avoid giving any location too much advantage, the pink cube is placed in the center of the equipment.

This roughly places the pink cube 49.5 cm away from the ear, 28 cm away from the waist, and 48.9cm away from the peripersonal location.

Location	x	у	Z
Personal Equipment (Ear)	0.15	0	-0.07
Personal Equipment (Waist)	0	-0.6	0
Peripersonal Equipment	0.2	0.2	0.6

Eight Tasks

The user is given one of the eight tasks at random. After the user has performed each of the eight tasks once, the user will be asked to do a 9th task with any method they like.

Task Type	Shorthand	Description
1	Headphones + Motion	Personal Equipment (Ear)
		Motion Gesture
2	Headphones + Surface	Personal Equipment (Ear)
		Surface Gesture
3	Waist + Motion	Personal Equipment (Waist)
		Motion Gesture
4	Waist + Surface	Personal Equipment (Waist)
		Surface Gesture
5	Peri + Motion	Peripersonal Equipment
		Motion Gesture
6	Peri + Surface	Peripersonal Equipment
		Surface Gesture
7	Alt Node + Slider	Moving a slider on a 2D Menu
		for Audio, through the use of Alt Node
8	Menu Button + Sliders	Moving a slider on a 2D Menu
		for Audio, through a menu button on
		the VR Controller

VES User Study Evaluation

Demographic

Eleven participants (N=11, mean age: 27.1, SD: 4.43, male/female 9/2) volunteered for the experiment.

Due to the COVID-19 pandemic, the experiment instructions were sent to the participants. It was conducted remotely at their homes with the participant's own VR equipment.

The VR devices include HTC Vive, HTC Vive Cosmos, Valve Index, Oculus Rift S, and Oculus (now Meta) Quest 1 and 2.

Statistical Analysis

The data did not follow a normal distribution as shown by plotting Normal Quantile-Quantile Plots and using the Sharpiro-Wilk Test..

We used the Kruskal-Wallis test to compare the different techniques. We found that we had a p-value of 0.1481. **However**, if we remove the first block of the data (out of the 10 blocks), the p-value changes to 0.0001244.

This suggests that 1) despite the tutorials, participants were still learning in the first block, and 2) there is a significant difference between these techniques once we account for the learning that occurred in the first block

boxplot of duration of different techniques

boxplot of headPosxyz of different techniques

boxplot of handRPosXYZ of different techniques

Post-Experiment Question - Techniques

Technique	Mental Demand	Physical Demand	Preference
Motion Gesture	1.55	1.82	3.82
Surface Gesture	1.73	1.55	3.55
Alt Node + Slider	2.27	2.45	2.45
Menu Button + Slider	2.09	2.00	2.27

boxplot of Preference of different techniques

Post-Experiment Question - Location

Location	Mental Demand	Physical Demand	Preference
Ear	1.82	1.82	3.91
Waist	2.36	2.27	2.45
Peripersonal	1.55	1.82	3.55

boxplot of Preference of different techniques

VES User Study Conclusion

Discussion

Techniques that are the most efficient (RQ1) are not those that require the least effort (RQ2). Interestingly, the techniques requiring the least movement are not perceived as least physically demanding.

Surface Gesture and Motion Gestures are not significantly different. RQ1: How do the techniques compare in terms of efficiency?

RQ2: How do the techniques compare in the effort required for each interaction technique?

RQ3: What makes users prefer one technique over another?

Limitation

Due to the risk of COVID-19, user experiments were conducted with participants' own devices and at their respective homes. Combined with small sample size, these limitations reduce the generalizability of the study.

Even with the unorthodox data collection, the study has shown virtual equipment does not need to be restricted to personal space, demonstrated that different classes of techniques are useful for different contexts, and provided insights on how future user studies should be conducted.

Future Explorations for VES

- 1. Focus not on speed, but precision.
- 2. Combination of Virtual Equipment with different purposes (audio, visual, privacy)
- 3. In-Person Study

Other Work

Other related work

Text Entry

Powen Yao et al. "Punch Typing: Alternative Method for Text Entry in Virtual Reality" SUI 2020 Tian Yang, **Powen Yao**, and Mike Zyda. "Flick Typing: Toward A New XR Text Input System Based on 3D Gestures and Machine Learning". IEEE VR 2022

Tian Yang, **Powen Yao**, and Michael Zyda. "Flick Typing: A New VR Text Input System Based on Space Gestures". VAMR 2022 / HCII 2022

Machine Learning Explorations

(in collaboration with students in the class Machine Learning in Games)

Sloan Swieso et al. "Toward Using Machine Learning-Based Motion Gesture for 3D Text Input". SUI 2021

Adityan Jothi et al. "Toward Predicting User Waist Location From VR Headset and Controllers Through Machine Learning". SUI 2021

Mark Miller et al. "Virtual Equipment System: Toward Peripersonal Equipment Slots with Machine Learning". SUI 2021

Pranavi Jalapati et al. "Integrating Sensor Fusion with Pose Estimation for Simulating Human Interactions in Virtual Reality". HCII 2022

Summary And Conclusion

Summary

The main objective of this thesis is to explore design principles of 3D interaction techniques in the domain of Extended Reality that advances in body tracking technology will enable.

This thesis solves this problem by providing a framework that developers can use to understand existing hyperphysical techniques and to develop their own.

Body of Work

Summary

There will be a dominant interaction technique.

Many use cases will still require use of non-dominant interaction techniques.

Continue to develop specialized solution for different needs

Future Works

Future Works

- Short Term
 - Extradimensional Space Storage User Study
 - Gesture Taxonomy Submission now with Spatial Interaction Model
- Long Term
 - Neuropsychological Impact of Equipment and Interaction in Peripersonal and Extrapersonal Space
 - "Walking through doorways causes forgetting" with Extradimensional Space and other Hyperphysical Transitions

Final Thoughts

With **hyperphysicality**, the sky is the limit to what our interactions can do. Meanwhile, **whole-body interaction** can ground us to what is desirable out of the infinite possibilities.

Extradimensional Space makes it easy to access the most relevant technique to solve problems we face in daily life.

Together, these design lenses will create a future, described by Arthur C. Clarke's Third Law, with advanced interactions that will be truly indistinguishable from magic.

Design Lenses for 3D User Interface in Extended Reality

Powen Yao <u>powenyao@usc.edu</u>, <u>powenyao@gmail.com</u> LinkedIn/Facebook/Google/Wechat: powenyao

Backup Slides

Body of Work

Qualification Scope

Design Lens

- Hyperphysical User Interface
 Whole-Body Interaction
- 3. Extradimensional Space

Virtual Equipment System

To do for Defense:

Evaluation of Virtual Equipment System

Extradimensional Space Storage User Study

Interaction Techniques

Name	Shorthand	Description
2D Grid Inventory	2DUI	Grabbing item laid out on a 2D User Interface grid
Bag of Holding	Nonlinear	Grabbing items in a 3D volume where the item po- sitions are a non-linear mapping from their actual positions in the Extradimensional Space storage.
Extradimensional Space Storage	EDS Storage	Entering an Extradimensional Space Storage and grabbing objects stored within as if one would in a storage room
Flick Storage	Flick	Accessing items stored on the surface of a sphere by rotating the user's controller

Research Question

1. How do the techniques compare in terms of efficiency?

(a) How do the different techniques compare regarding task completion time?

(b) How do the different techniques compare regarding accumulated head movement required for task completion?

(c) How do the different techniques compare regarding accumulated hand movement required for task completion?

2. How do the techniques compare in the effort required for each interaction technique?

(a) How do the techniques compare in terms of mental demand?

(b) How do the techniques compare in terms of physical demand?

(c) How do the techniques compare in terms of temporal demand?

- (d) How do the techniques compare in terms of effort?
- 3. What makes users prefer one technique over another?
- (a) In what scenario does the user prefer one technique over another?
- (b) Why does the user prefer one technique over another?

Study Flow

11 min Informed Consent Form

11 min Warm-Up (Wearing VR, VR Equipment Introduction, Safety)

40 min, 10 each Treatments, repeated 4 times total, 1 for each treatment

2 min Walkthrough & Tutorial

6 min Tasks

2 min Break & Questionnaire

20 min Semi-Structured Interview

5 min Debrief

"Not enough buttons"

"Not enough buttons"

Plan after Defense

Immediate

Donate Platelet at American Red Cross

See a therapist

Grab dinner with friends

After

Get a job

Taxonomy paper again.. But now with SIM

Global Game Jam

Publish Innovation in Games paper from my second PhD of Game Design

XROS UI Project

Project Codebase:

https://github.com/powenyao/XR-Interaction-Toolkit-Examples

Project Website:

https://powenyao.github.io/XR-Interaction-Toolkit-Examples/website/index.html

Relevant Youtube Videos

https://www.youtube.com/playlist?list=PLQkQPxKAn5cRffVUPzxOg6kWXBP46UCV_

@Shitong Sketches needed?

F2. Personal, Peripersonal, Extrapersonal Space the othe afterH. Definition of Extradimensional SpaceI think the example we have look decent, though its from wikipedia on connectivity (graph theory). Anything better would require a lot more work?

O. Extradimensional Space Storage sketches are... well they could be better lo P. (Higher Priority) 5 Components of a Storage System

Q. Assumptions Slide "this "position and rotation" comment sounds like a good place for some hand gestures with a held object for clarity."

A. (Low priority?) sketch that help explains AR/VR/MR is represented by XR
B. (Low priority?) Sketch to show different posture of a person, standing, sitting, lying down, prone (?), moving (room scale)
C. (Low Priority) Mobile Augmented Reality
Walking, Bicycling, Driving Vehicle, Riding as Passenger
K. (Low priority?) Should we replace the coordinate system image in context mapping...? 93
188
L. (Low priority?) Spatial Interaction Model (being shown everything, made in Miro. Do you

Affecting Remote Target

Affecting Remote Target

Reference Links

Where some figures are created

https://miro.com/app/board/o9J_IAa4mjU=/

Qualification Slides

https://docs.google.com/presentation/d/1GuzySbaRNpcD5JWaW6wE2jLJ5QrtebpKtc6LvTAuLuQ/edit

PhD Thesis

https://www.overleaf.com/read/ncptfcvcczwx#3b1888

TODO

better introduction stating the challenges

2) Nature breakdown slides quotes added for the six examples

3) Context Mapping - User

4) SSS

a) talk more about what the symbols do quotes added

b) Dimensional Sight example quotes added

c) equipment as metaphor for having abilities

d) Simple extradimensional storage

5) VES

1 slide to talk about sets a)

1 slide for each set

c) talk about surrogate object, actor, effect, voodoo doll, etc? No time...

6) explanation of the EDS quotes added for the four diagrams

7) VES user study details

a) description of technique

b) questionaire, user study, questionaire

c) findings and interpretations

8) summary and conclusion from thesis